2006 Widener University Programming Contest for High School Students

Widener University

Thursday, November 16, 2006

Rules:

1. Name your programs as follows: TeamNProblemK.ext, where N is a team number, K is a problem number, and ext is a language extension. For example, if you are in Team 1 and you are working on problem 1 and you are writing in C++ you will save your program as: Team1Problem1.cpp

2. You have to use standard input and standard output for ALL problems. It means that input will be entered from the keyboard and the output will be displayed on the screen. If you have language specific questions related to this requirement, please ask all questions during the orientation time.

3. Your source code should include a comment at the beginning indicating your school’s name, your team number and the names of the students in the team.

4. How to save your work: You will store your programs on the zip disk that will be provided for each team. Teams that are working in the main Computer Science department lab will save their work on the desktop of the computer in the separate folder that has a name of the team, for example, team 1 will create a folder team1 and will save all programs in this folder.

5. Submission:

· When you are ready to submit the solution for the problem you have to raise your hand to call to the judge.

· The judge will write the submission time for the problem.

· IMPORTANT: All submissions are FINAL. You will not be allowed to resubmit the solution

Problems

Problem 1:

In the Gregorian calendar a year is a leap year when the number representing it is divisible by 4, unless it is divisible by 100, unless it is divisible by 400. Thus years such as 1996, 1992, 1988 and so on are leap years because they are divisible by 4 but not by 100. For century years, the 400 rule is important. Thus, century years 1900, 1800 and 1700 while all still divisible by 4 are also exactly divisible by 100. As they are not further divisible by 400, they are not leap years. Also, you can assume that there were no leap years before 1582.

Write a program that asks the user for a year and computes whether that year is a leap year. You can assume that the input is a valid positive integer less than 4000. You don’t need to check validity of the input.

Example:

Input
1980
Output
 Leap Year

Input
1900
Output Not a Leap Year

Input 1200 Output Not a Leap Year

Input 2000 Output Leap Year

Input 3000 Output Not a Leap Year

Problem 2:

The ancient Greeks were fascinated with numbers that are equal to the sum of their proper factors; they called such numbers perfect. For example, 6 is perfect because its proper factors (i.e. numbers that are less than 6 and divide 6 evenly) are 1, 2 and 3 with the sum being equal to 6. Another perfect number is 28, since 28 = 1+2+4+7+14 (verify manually that 28 only has these proper factors).
Write a program that reads a positive integer N and prints out all those numbers between 1 and N (including N) that are perfect numbers. You can assume that the input is valid positive integer.

For example,

Input 28 Output 6, 28

Input 50 Output 6, 28

Input 1000 Output 6, 28, 496

Problem 3:

A company wants to transmit data over the telephone line, but they are concerned that their lines are tapped. All of their data is transmitted as four-digit integers. They decided to encrypt a four-digit number as follows: (1) they will replace each digit by

((digit + 7) mod 10); (2) they will then swap the first digit with the third digit and the second digit with the fourth. The resulting four-digit number is the encrypted number. To decrypt the number, the reverse procedure should be applied (you need to figure out the algorithm).

Write a program that can do either encryption or decryption. The program must take two inputs. The first input must be either 1 or 2, with 1 signaling encryption and 2 signaling decryption. The second input is a positive integer less than 10,000 which will be either encrypted or decrypted depending on the first input.

Example

Input: 1 6254

Output: 2139

Input 2 2139

Output: 6254

Program 4:

Write a program that accepts a collection of fractions and computes their sum.

Each fraction is represented by pair of positive integers. The input of your

program is an even number of positive integers, each pair represents the

Numerator and Denominator of the input fraction. The first negative number will be the sign for the end of the input. The output of your program will be the sum of the input

fractions. The result of the program should be simplified fraction (no common divisors for the Numerator and Denominator) and your program should find and

print the integer and fractional part, in a case that Numerator is greater or

equal to the Denominator. The output must be exactly correct. Floating point approximations will not be accepted no matter how accurate. You can assume that input includes at least one fraction and you can assume that the input is valid.

Example:

Input 2 3 4 6 –9

Output 1 1/3

Input 18 4 –9

Output 4 1/2

Input 1 2 1 3 1 4 -1

Output 1 1/12

Program 5:

In this program you need to implement the simplified version of the new score system in the Figure Skating competition.

Description of the simplified version: There are 12 judges that are present.

First step: all 12 judges submit their scores.

Second step: 9 scores will be randomly selected.

Third step: the highest and lowest score are thrown out from the nine counting judges.

Last step: the remaining seven scores are averaged.

Write a program that reads 12 scores submitted by 12 judges for the specific event and calculates the final score according to the rules written above. Your program is supposed to print the results after each step of calculations (see example below for the output format). Also, the program is supposed to run in different ways on the same input in different runs, since you are using random selection at step 2. Each input score is an integer number between 0 and 100. The input numbers are separated by space. You can assume that the input is valid. Use whatever floating point format your language provides by default for the output of the final score.

Example:

Input: 12 49 100 98 99 16 13 100 99 12 99 100

Output:

Step 1: Input Scores: 12 49 100 98 99 16 13 100 99 12 99 100

Step 2: Nine random selected scores: 12 100 98 99 16 13 12 99 100

Step 3: The remaining seven scores: 100 98 99 16 13 12 99

Step 4: The final score is: 62.428571

