Enriching Introductory Programming Courses with Non-Intuitive Probability Experiments Component

Yana Kortsarts
Computer Science Department, Widener University, Chester, PA

Yulia Kempner
Department of Computer Science, Holon Institute of Technology, Holon, Israel
Probability theory is a branch of mathematics that plays one of the central roles, not only in computer science, but also in science at large.

The focus of the current work is on the integration of the non-intuitive probability experiments into the introductory programming course.

These examples do not require any knowledge of probability.

The value of the probability or the expectation is computed via a program that students run.
The proposed enrichment helps to achieve the following goals:

- Engaging students in experimental problem solving
- Increasing students’ motivation and interest in programming
- Increasing students’ attention and curiosity during the class
- Enhancing students’ programming skills
Non-Intuitive Testable Probabilities

- Non-intuitiveness of many probability statements
- Difficult for students to guess a correct answer
- Non-intuitiveness: Intuitive problem solving leads to the wrong answer
- Testability: The non-intuitive probability problem could be “translated” into a programming assignment. It is possible to compute, or closely approximate, the required probability or expectation by writing a program with a low running time
The Averaging Principle

While designing a numerical simulation it is important to take into account that, given a single trial, the value reached can be far off the expectation.

We apply the averaging principle.

The program simulates the experiment many times; the results for all trials are added and then averaged at the end to obtain a final answer.

By simple laws of probability of sum of independent events, we know that the average value, produced by our program, will converge to the correct result.
Is your random number generator really random?

- It is known that randomized algorithms might perform poorly because the random number generator was faulty.
- Checking the performance of the random number generator provides a soft introduction to the subject of estimating random events.
- An obvious remark is that we do not know how to find even a single random bit. Still, we do know how to create pseudo-random bits.
Is your random number generator really random?

To evaluate the behavior of the random number generator, we ask students to consider the simple experiment of throwing a fair coin with ‘H’ and ‘T’ 1000000 times.

This is a single trial of the experiment, and we ask students to verify that, for example, the number of resulting ‘H’s is about 500000.

For this example, it is known that standard deviation is

\[\sqrt{\frac{n}{4}} = 500 \quad , \quad n = 1000000 \]
The Monty Hall Problem - is a probability puzzle loosely based on the American television game show *Let's Make a Deal* and named after the show's original host, Monty Hall.

There are three doors. Behind one of them there is an expensive car. Behind the two others there is, say, a goat...
Experiment is conducted as follows:

- The player chooses a door
- The host opens the door
 - since there are two doors with a goat, the host, who knows where the car is, is able, regardless of the choice of the player, to open a door that contains a goat
- Now, we have the chosen door, the open door, and the third one
- At that moment, the host asks if the player wants to switch to the other (closed) door
- The question is whether the player should switch
For almost all students, since the chosen door and the other closed door look the same, the intuitive answer is not to switch
Explanation of the Correct Answer

- The correct answer: with probability $2/3$, one should switch, and with probability $1/3$, one should not switch.
- We can say by symmetry, that the car is behind door 1.
- If the player chooses 1, then he should not switch.
- If he chooses 2, he should switch, and if he chooses 3, he should switch.
- This gives probability $2/3$ for changing; namely, in a large number of trials, it would be worth changing to the other closed door about $2/3$ of the time.
def makeDeal(n):
 doSwitch=0
 noSwitch=0
 for i in range(n):
 carDoor=random.randint(1,3)
 playerDoor=random.randint(1,3)
 if(carDoor==playerDoor):
 noSwitch+=1
 else:
 doSwitch+=1
 return (float)(noSwitch)/n, (float)(doSwitch)/n
Birthday Paradox

- The non-intuitive property: for 23 students in the class, there is a probability of slightly more than 50 percent that there are two students who have the same birthday (take in account only day and month)
- The intuition: it cannot be that among only 23 people, there are two that were born on the same date - 23 is so much smaller than 365
- For 23 people in the class, the number of possible pairs is $253 = (23 \cdot 22)/2$. This now seems much closer to 365
- For 30 students, the probability of two people being born on the same day is 0.7
The "strange " behavior of the classical algorithm to find the maximum

- Output: M – maximum value
 1. $M \leftarrow A[1]$

- How many times will the maximum be exchanged if the order between numbers of the array is random?

- Typical guesses are $n/2$ or $n/4$. However, the expected number of exchanges is bounded by $\ln n + O(1)$
Theoretical Explanation

- Let X_i be the indicator variable for the event that M was replaced by A[i]
- Thus the number of exchanges is $C = \sum_i X_i$
- The expectation of C is $\sum_i E(X_i)$
- The probability that A[i] will be the maximum of the first i elements, in a random array, is $1/i$ by symmetry, hence

$$E(C) = \sum_i \frac{1}{i} \leq \ln n + O(1)$$
Numerical Solution

Since only the order of the numbers is important, we recommend the use of numbers 1, 2, \ldots, n as the entries of an array of size \(n \).

To generate a random permutation of the numbers 1, 2, \ldots, n, we recommend using the Fisher-Yates shuffle, also known as the Knuth shuffle with time complexity \(O(n) \).
Numerical Solution

Fisher-Yates (Knuth) Shuffle

- Initialization:
 for i from 1 to n do: $A[i] = i$

- Shuffle:
 for i from n to 2 do:
 - $j = \text{random integer between 1 and } i$
 - swap $A[j]$ and $A[i]$

- $\ln(1000)$ is about 6.9, students are able to observe the surprising result that maximum is changed only a few times
The strange behavior of random walks

- In our example, the random walk starts at 0, and the goal is to reach $n = 100$
- At 0, the random walk must move to 1. At each step, which is not 0, the random walk moves +1 or -1 with equal probability 1/2
- The process ends when the random walk reaches $n = 100$
- Here, the students are asked to make predictions about the number of steps required to walk from 0 to 100
- It turns out that the expectation is n^2
Final Example

- This example illustrates the known problem of faults when a collection of bits is streamed.
- Some 0 values change to 1 due to local interference and vice versa.
- **The problem:** A transmitter sends binary bits.
- For a single bit, there is a probability 0.8 that 0 is sent and probability 0.2 that 1 is sent.
- When a 0 is sent, a 0 will be received with probability 0.8.
- When a 1 is sent, the 1 will be received with probability 0.9.
Question: If a 1 is received, what is the probability that a 1 was sent?

The correct value is 0.53

To provide an intuitive explanation of why the probability is so low, one may point out that 1 arrives not so frequently, since the probability that 1 is sent is only 0.2, and it makes a small sample

To get good, results one needs to take a large sample

This can be explained in relation to, for example, polls taken for elections
Assessment

- Multiple lab sessions allowed comparison assessment
- Half of the lab sessions practiced repetition and decision structures on non-intuitive probability experiments, and the rest of the students practiced the same material on standard examples
- Combination of indirect and direct assessment tools
- Level of engagement, interest, and curiosity during the course work, 1 “very low” and 5 “very high.”
- A total of 102 students from both institutions participated in the pre and post survey
<table>
<thead>
<tr>
<th>Category</th>
<th>Pre-Survey Probability Group</th>
<th>Post-Survey Probability Group</th>
<th>Pre-Survey Non Probability Group</th>
<th>Post-Survey Non Probability Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engagement</td>
<td>3.7</td>
<td>4.1</td>
<td>3.8</td>
<td>3.7</td>
</tr>
<tr>
<td>Interest</td>
<td>4.3</td>
<td>4.5</td>
<td>4.1</td>
<td>4.2</td>
</tr>
<tr>
<td>Curiosity</td>
<td>3.9</td>
<td>4.5</td>
<td>4.0</td>
<td>3.9</td>
</tr>
</tbody>
</table>
Results

- “Probability” students showed increased engagement, interest, and curiosity after non-intuitive probability experiments were introduced during the laboratory sessions.

- In addition to surveys, all students were administered the same exam to directly measure their understanding of the programming structures.

- The average grades for both groups of students, before and after the probability component in the next table.
Table 2: Average Grades

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Grade</td>
<td>78.9</td>
<td>80.2</td>
<td>78.85</td>
<td>78.7</td>
</tr>
</tbody>
</table>

While the average in the non-probability group remained about the same, the probability group performed slightly better on the exam that was introduced after the probability component. This supports our additional claim that non-intuitive probability experiments have potential to improve student learning and comprehension of the repetition and decision programming structures.
Summary and Future Plans

- In general, the assessment results support our opinion on advantages of the proposed methodology.
- We are planning to continue inclusion of the probability experiments in the future iterations of the course.
- To integrate the proposed ideas into advanced courses, some of the examples could be generalized.